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Abstract

In this work, a new methodology for inverse estimation of thermal constitutive models is introduced. This new methodology combines
computational intelligence with finite element analysis for solving inverse heat transfer problems. A neural network (NN) representation
of thermal constitutive behavior and its implementation in non-linear finite element analysis are presented. The self-learning methodol-
ogy uses a novel concept for developing material models using experimental data and iterative finite element analyses. The proposed
methodology searches for complete thermal constitutive models as opposed to identifying parameters in predetermined functional forms.
The application of this new methodology is illustrated using a simulated steady-state heat conduction problem. It was found in simulated
experiments that the self-learning finite element method can inversely recover accurate NN representations of thermal constitutive mod-
els using simple temperature measurements. Moreover, the method showed stability in the presence of imperfect or noisy data. It is
shown that the use of a NN representation of the constitutive model improves the stability of solutions naturally due to the imprecision
tolerance of NN.
� 2006 Published by Elsevier Ltd.
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1. Introduction

Thermal properties of materials are commonly mea-
sured using controlled laboratory tests that employ sim-
plistic specimen geometries and boundary conditions.
However, thermal properties are difficult to determine
through controlled tests when material behavior is complex
such as is the case when thermal conductivity depends on
temperature, position, and/or material orientation (i.e.
anisotropy).

Inverse estimation of thermal properties is commonly
cast as an optimization problem. The usual procedure con-
sists in constructing a numerical representation of the heat
transfer problem, defining an error functional, and mini-
mizing this error or cost functional using gradient-based
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optimization algorithms. Examples of this approach can
be found in the work of Scarpa et al. [1], Lin et al. [2],
Huang and Chin [3], Alifanov [4], Tadi [5], Beck [6], among
others. Despite significant progress made in this field, avail-
able methods for solving these inverse problems still pres-
ent limitations when dealing with complex materials that
involve anisotropy, heterogeneity, and non-linearity. In
addition, the presence of imperfect or noisy information
in the measured response, geometry, and/or initial and
boundary conditions of the system may render current
solution algorithms unstable [4].

More recent work in this area has involved the use of
non-gradient based methods of optimization to solve the
inverse heat transfer problem. Some examples of these
techniques include the use of neural networks (NN) to
directly map the solution of the inverse problem as shown
in a comprehensive review reported by Ashforth-Frost
et al. [7], as well as in [8–13]. Work has also been done in
the use of stochastic global search methods such as genetic
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Fig. 1. Steady-state heat transfer problem.

Fig. 2. A neural network computation at a single node.
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algorithms to evolve a solution to the inverse problem as
shown by Divo et al. [14].

This paper describes a new non-gradient based method-
ology for inverse identification of thermal constitutive
models from laboratory or field measurements. This new
methodology, called self-learning finite elements from
hereon, uses a neural network (NN) representation of a
material model incorporated into a non-linear finite ele-
ment code, and the NN material model is trained using
the autoprogressive method [15]. The autoprogressive
method differs significantly from common applications of
NN models in the sense that there is not a known set of
data to train the NN a priori, but the material model is
extracted iteratively from global measurements (e.g. tem-
perature) using non-linear finite elements.

The use of NN to represent thermal constitutive behav-
ior allows for very general and complex material represen-
tations that can include anisotropy, non-linearity, and
heterogeneity in a natural way. This fact stems directly
from the universal function approximation capabilities of
NN. This new approach searches for entire constitutive
thermal models defined as mappings between heat flux
and variables such as temperature, temperature gradient,
and spatial position.

It is well known that inverse problems are oftentimes ill-
posed due to the lack of continuity of the solution on the
experimentally measured data (i.e. instability), non-unique-
ness, and existence of solutions. In the self-learning finite
element methodology, stability of solutions arises naturally
due to the imprecision tolerance of NN.

Self-learning finite elements can be cast in a general form
to solve steady-state or transient heat conduction prob-
lems. For matter of clarity, this new methodology will be
introduced in the context of steady-state problems. The
formulation of the forward heat transfer problem is intro-
duced first. Then, the NN representation of thermal consti-
tutive models, and its implementation in finite element
schemes are presented. After the finite element implementa-
tion, the self-learning algorithm is developed and a simple
example is used to illustrate the method.

2. Formulation of the heat transfer problem

A steady-state 3D heat conduction problem can be
described mathematically as follows:

r �~J ¼ 0 in X; ð1Þ
q ¼ �~J �~n on Cq;

T ¼ T 0 on CT ;
ð2Þ

~J ¼ f ðrT ; T ;~xÞ 8~x; T 2 X; ð3Þ

where ~J is the heat flux, T is temperature, q is the external
boundary heat flux, ~x is a position vector, X is a 3D do-
main, C is the boundary of the domain, Cq is the part of
the boundary where the external heat flux is specified, CT

is the part of the boundary where temperature is specified,
and f(Æ) is a function that defines the constitutive thermal
behavior of the material. In this work, column vectors
are represented with an arrow and matrices and row vec-
tors are represented with bold letters. The steady-state heat
transfer boundary value problem is shown in Fig. 1. It is
assumed that the geometry of the body and the boundary
conditions represented in Eq. (2) are known. Although heat
flux and temperatures are specified as boundary conditions,
the methodology described in this work is general and
other boundary conditions (e.g. convective, radiation,
etc.) can be taken into consideration in a similar manner.
The inverse problem consists in determining the unknown
constitutive relationship described in Eq. (3) given bound-
ary conditions and temperature measurements at discrete
points in the body. It is important to clarify at this point
that, as opposed to usual approaches, the methodology
proposed in this paper is concerned with determining a
thermal constitutive relationship instead of finding specific
material parameters (e.g. thermal conductivity) based on
postulated laws.

3. Neural network representation of thermal constitutive

model

Neural networks (NN) are non-linear mapping systems
that can generate complex behavior [16]. A NN consists
of a number of computational units called neurons that
are linked to each other through weighted connections.
The basic principle behind the computations performed
by a single neuron is illustrated in Fig. 2. Each neuron
receives inputs, X1, . . . ,Xn, from other neurons and
produces a scalar output, y, through a non-linear function
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of the weighted inputs. The scalar output of each neuron
serves as an input to other processing neurons. The func-
tional representation capability of the NN depends on
the number of neurons, how they are interconnected, and
the value of connection weights. Neural networks can be
trained to learn the relationship between inputs and out-
puts through a process in which known cases are presented
to the network and the connection weights are adjusted to
minimize the error between the known values and the NN
outputs. Once a NN is trained, it can generalize to other
cases not used for its training. For a more complete
description of NN and training approaches the reader is
referred to [16].

As previously mentioned, NN have been commonly
used as simple linear and non-linear regression tools in
the field of heat and mass transfer. In the vast majority
of NN applications in heat transfer, inputs and outputs
of a system are measured and a NN model is trained
directly with this information. The self-learning finite ele-
ment methodology presented in this paper departs signifi-
cantly from this common approach. In this approach, the
universal function representation capabilities of NN are
used to postulate very general thermal constitutive models,
which are defined as mappings between heat flux and tem-
perature gradient, temperature, and spatial position.

Ghaboussi et al. [17] introduced the concept of using
NN to represent constitutive behavior in solid mechanics.
Since then, NN have been successfully applied to model
complex material behavior in the realms of plasticity and
viscoplasticity [18,19]. Invoking this general concept, ther-
mal constitutive behavior can also be modeled using NN.

The constitutive thermal model described by Eq. (3) can
be represented by means of a NN as shown in Fig. 3. The
NN material model shown in Fig. 3 can be represented as
[15]

~J ¼ JNNfrT ; T ;~xg. ð4Þ
Fig. 3. Neural network representation of a thermal constitutive model.
Eq. (4) indicates that the NN takes T, $T, and~x as inputs
and produces ~J as the output. It should be noticed that
Fourier’s law is one form of thermal constitutive model
falling within those represented by Eq. (3).

4. Finite element implementation of neural network thermal
constitutive models

Let dT be an arbitrary continuous virtual temperature
field defined on X and its boundary C. The weak form of
the governing energy conservation partial differential equa-
tion can be obtained by multiplying Eq. (1) by dT, integrat-
ing over the domain, using the divergence theorem, and
substituting the natural boundary conditions given in
Eq. (2) to renderZ

C
dTqdCþ

Z
X
rdT �~J dX ¼ 0. ð5Þ

To obtain an algebraic system of equations from the weak
form presented in Eq. (5), the body is divided into finite ele-
ments and the temperature field is approximated within
each element as

T ð~xÞ ¼ Nð~xÞ~T e; ð6Þ

where Nð~xÞ is a row vector containing interpolation
functions and ~T e is a column vector of element nodal
temperatures. Using the Galerkin approach, the virtual
temperature field is also interpolated as shown in Eq. (6).
Substituting the approximated temperature and virtual
temperature fields into Eq. (5) and adding individual ele-
ment contributions, we obtain a system of non-linear alge-
braic equations as

d~T T
g

X
elements

Z
Ce

NT qdCe þ
X

elements

Z
Xe

BT~J dXe

 !
¼ 0; ð7Þ

where d~T g is a vector containing all nodal virtual tempera-
tures in the domain, Xe is the volume of an element, Ce is
the boundary of an element, and

B ¼ oN

o~x
. ð8Þ

Since Eq. (7) must hold for all d~T g, the expression in
parentheses is equal to zero.

Introducing the external heat flux vector supplied to the
body as

~Q ¼
X

elements

Z
Ce

NT qdCe; ð9Þ

and the internal heat flux vector as

~I ¼
X

elements

Z
Xe

BT~J dXe; ð10Þ

then the system of non-linear algebraic equations can be
simply expressed as

~Qþ~I ¼ 0. ð11Þ
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The internal heat flux vector, ~I , is usually computed
using numerical integration, which requires computing
the heat flux, ~J , at Gauss points from the NN constitutive
model described above.

The Newton–Raphson method is commonly used for
the solution of the non-linear system described in Eq.
(11). This solution procedure requires the evaluation of a
Jacobian matrix defined as the partial derivative of the
internal heat flux vector,~I , with respect to the global nodal
temperature vector, ~T g. Mathematically, the Jacobian
matrix can be computed as

A ¼ o~I

o~T g

. ð12Þ

Substituting Eqs. (6), (8) and (10) into Eq. (12), and using
the chain rule of differentiation, yields

A ¼
X

elements

Z
Xe

BT ðKBþ~r NÞdXe; ð13Þ

where

K ¼ o~J
orT

ð14Þ

and

~r ¼ o~J
oT

. ð15Þ

When a NN constitutive model is used, the matrix K con-
tains the partial derivatives of the NN outputs with respect
to the temperature gradient inputs, while the vector~r con-
tains the partial derivatives of the NN outputs with respect
to the temperature input. These quantities are evaluated at
Gauss points in the finite elements during the numerical
integration process.

A NN constitutive model is a general mapping of the
relationship between temperature, temperature gradients,
and fluxes. Therefore, the NN constitutive model can
represent any material, including those that may not obey
Fourier’s law. If the material obeys Fourier’s law, the
partial derivatives of the NN output with respect to
the temperature gradients, as shown in Eq. (14), produce
the material thermal conductivity matrix.

The matrix defined in Eq. (14) can be computed from
the NN constitutive model by taking derivatives of the
NN flux outputs with respect to the temperature gradient
inputs using an analytical approach, as shown by Hashash
et al. [20] and Cardaliaguet [21], or by using a numerical
approximation. In this work, the latter was used for sim-
plicity. The jth column of the K matrix can be evaluated
by a forward difference approximation as

Kð:,jÞ ¼
~JNNfrT þ e~ej; T ;~xg �~JNNfrT ; T ;~xg

e
; ð16Þ

where ~ej is the jth column of the identity matrix. The en-
tries of the column vector ~r can be computed in a similar
manner by differentiating the NN outputs with respect to
the temperature input.
5. Self-learning algorithm for inverse solution

Neural network models are usually trained with data
that is determined directly from experiments. A drawback
of this approach is the need for a comprehensive set of data
(e.g. heat fluxes, temperature, and temperature gradients)
to train a NN material model. Such a comprehensive set
involves a large amount of information that is often diffi-
cult to obtain directly from laboratory tests. Previous
research [15] has shown that a comprehensive data set for
training a NN material model may be obtained through
iterative non-linear finite element analyses. To realize this,
two essential concepts must be recognized. First, during a
forward finite element analysis of the boundary value prob-
lem described in Section 2, local quantities that define
material behavior such as heat flux, temperature gradients,
and temperature are calculated point wise for the entire
domain. Second, temperatures at any point in the domain
carry information about the solution of the boundary value
problem, which in turn contains information about the
local material behavior. The self-learning finite element
methodology described herein uses these two essential
concepts to train a NN material model and inversely recon-
struct thermal constitutive models from sparse experimen-
tal temperature measurements.

The main components of the self-learning method are
illustrated in Fig. 4a. As shown in this figure, an experi-
ment is carried out in which temperatures are measured
in the boundary and/or inside a body of known geometry
and boundary conditions. Then, a finite element model of
the body is constructed. This finite element representation
uses a NN as its constitutive material representation, as
explained in Section 4. Each cycle or iteration of the self-
learning algorithm consists of two finite element analyses,
data collection from these two analyses to form a training
set, and training of the NN material model with this data
set. In the first finite element analysis only heat flux, ~J , is
recorded at all Gauss points, while in the second analysis
measured temperatures are enforced as constraints in the
analysis and only the temperature, T, and temperature gra-
dient, $T, are recorded at the Gauss points. The NN model
is then trained using this data, which contains information
unknown to the NN. Notice that the NN model produces
the data that is used for its own training, which is the rea-
son why the methodology is called ‘‘self-learning.’’ These
steps and the rationale behind them are explained in detail
below and are illustrated in the flowchart given in Fig. 4b.

5.1. Pretraining or initialization of NN model

The first step in the self-learning algorithm is to initialize
the NN material model. This initialization is performed by
training the NN to represent an arbitrary constitutive rela-
tionship, which is consistent with the physics of the prob-
lem. For instance, an initialization training set can be
created by generating random temperatures and tempera-
ture gradients, and producing the corresponding material



Fig. 4a. Schematic diagram of the self-adaptive finite element analysis.

Fig. 4b. Flowchart of the self-adaptive finite element analysis.
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point heat fluxes using Fourier’s law with a constant ther-
mal conductivity. The purpose of this step is to avoid insta-
bilities in the finite element analysis during the first few
runs that could arise when a NN is initialized with random
weights without training.

5.2. First finite element analysis

A finite element analysis is performed and the heat flux
vector ~J is recorded at all Gauss points in the model. The
first finite element analysis computes a forward solution
of the boundary value problem with the current NN mate-
rial model, and is used to determine the internal heat flux
field. This heat flux field is in equilibrium with the actual
boundary conditions. However, the measured tempera-
tures, in general, will disagree with the temperatures calcu-
lated in the first analysis because the NN constitutive
model, to this end, does not represent the real material
behavior. For this reason, only heat flux vectors are saved
during the first analysis.

5.3. Second finite element analysis

A second finite element analysis is performed using the
known boundary conditions, but also the measured tem-
peratures are imposed as known constraints. Temperature
and temperature gradients are recorded at all Gauss points.
For better understanding of the reason behind this step, it
is convenient to express the vector of measured tempera-
tures as the sum of calculated temperatures plus a temper-
ature correction as

~T M ¼ ~T FEA þ D~T ð17Þ

where ~T M is a vector containing measured temperatures,
~T FEA is a vector containing the temperatures at measure-
ment locations computed in the first finite element analysis,
and D~T is a vector containing the discrepancy between
measured and computed temperatures. By imposing mea-
sured temperatures as additional boundary conditions,
temperature corrections are propagated to all points in
the domain during the second analysis, resulting in a tem-
perature field that is closer to the temperature distribution
of the actual physical system. However, the heat flux field
resulting from this finite element analysis is not in equilib-
rium with the actual boundary conditions due to the
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imposition of temperature constraints. Therefore, only
temperature and temperature gradients are saved in the
second analysis.

5.4. Training the NN material model

A NN training set is then formed with the temperatures
and temperature gradients from the second finite element
analysis as inputs to the NN, and the corresponding
material point heat flux vectors from the first finite element
analysis as outputs to the NN. The NN is trained with
the above data set using any conventional training algo-
rithm [16]. For this work, the resilient propagation
algorithm (RPROP) was used to train the NN material
model.

The heat fluxes from the first analysis and the tempera-
tures and temperature gradients from the second analysis
represent a data set that is more consistent with the mea-
sured behavior of the real system. Once trained with the
new data set, the NN material model becomes a better
approximation to the actual material behavior.

5.5. NN architecture

The NN architecture refers to the number of input neu-
rons, output neurons, hidden layers, and neurons per hid-
den layer contained in the network. The architecture also
refers to the method by which information propagates
through the network. For this work, only fully connected
feed-forward NN were considered, in which information
passes in only one direction. That is, information flows
from the input neurons to the output neurons where each
neuron in a layer receives information from all neurons
in the previous layer.

The number of input and output neurons of a NN is
specified by the desired relationship to be mapped by the
network (e.g. temperature and temperature gradients as
inputs and heat fluxes as output). The number of hidden
neurons and hidden neuron layers are non-unique quanti-
ties that depend on the complexity of the relationship to
be mapped. In the case that too few hidden neurons are
used, the NN will not be able to adequately map the train-
ing set values. Whereas, if too many hidden neurons are
used, the NN can be subject to over training, in which,
the interpolation ability of the NN for information outside
of the initial training set will be adversely affected. In the
case that sufficient knowledge is known a priori about the
complexity of a data set to be mapped with a NN, the num-
ber of hidden neurons can be determined heuristically or
through trial and error. Otherwise, it is advantageous to
implement an adaptive method for determining the number
of hidden neurons, as described by Joghataie et al.[22]. In
an adaptive method, a NN is created with an arbitrarily
small number of hidden neurons. Then, the number of hid-
den neurons is increased iteratively based on the ability of
the NN to learn a portion of the training set and predict
another portion of the training set.
5.6. Stopping criterion

A criterion needs to be defined for deciding when to stop
the self-learning algorithm. In this research, the following
procedure was used. A finite element analysis is performed
with the updated NN model, and an error measure between
the calculated and measured temperatures is computed. If
this error is below a certain user-defined tolerance or a
maximum number of iterations are exceeded, the self-learn-
ing process is stopped. Otherwise, heat fluxes at Gauss
points are recorded (i.e. step 5.2) and steps 5.3 and 5.4
are repeated.

An error measure is needed for deciding when to stop
the self-learning training process. Any suitable error defini-
tion can be used to measure the discrepancy between the
finite element prediction and the observed quantities. For
this work, we have used the following error definition:

EGlobal ¼
X

k

T MEA
k � T FEA

k

� �2
; ð18Þ

where TMEA are the measured temperatures, TFEA are the
computed temperatures, and k is the index for temperature
measurement points.

5.7. Global and local errors

During the self-learning process, two error definitions
are used: a global error and a local error. The global error
is defined by Eq. (18) and represents the discrepancy
between the approximate solution to the boundary value
problem and experimental measurements. The local error
is the error associated with the NN learning process. Dur-
ing training, the NN material model learns the updated
data set to within a preset tolerance. The mean squared
error is commonly used in the training of NN, and it is
calculated as

EMSE ¼
1

NP

XN

i¼1

XP

p¼1

ðtpi � ypiÞ
2
; ð19Þ

where N is the total number of outputs of the NN, P is the
total number of training patterns, p is the index of the
training patterns, and i is the index of the NN outputs.

In the event that the global error stagnates at a high
value, it is likely that the NN is not sufficiently complex
to map the constitutive relationship for the problem. This
should also be evident in the inability of the NN training
to converge to a sufficiently low local training error. This
issue can be addressed by interactively adjusting the archi-
tecture of the NN, or by implementing an adaptive method
for estimating the size of the network [15].

6. Example problem

A simulated example problem was created to demon-
strate the feasibility of the self-learning finite element meth-
odology described above. A simulated experiment is shown



Fig. 5. Simulated experiment and finite element model: (a) simulated test, (b) finite element representation, (c) temperature distribution from finite element
analysis.
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in Fig. 5a. In this simulated test, a rectangular plate
(20 cm · 20 cm · 1 cm) was heated with a surface heat flux
equal to 7 MW/m2 on one of its sides, while a temperature
of 100 �C was held constant on the other three sides. This
configuration provides a non-uniform spatial distribution
of temperatures, temperature gradients, and internal fluxes
suitable for training a NN material representation. A finite
element model of the plate is shown in Fig. 5b, and a tem-
perature contour plot showing the temperature distribution
from an analysis of the model using a known conductivity
function is shown in Fig. 5c. The temperature distribution
plot shows that the largest temperature variations occur
towards the top of the plate where the heat flux is applied.
Therefore, it is logical that measurement points should be
located in this region to exploit the largest amount of infor-
mation possible during the inverse solution process.

The material used in the simulated experiment was iso-
tropic and homogeneous, and a temperature-dependent
conductivity function reported by Stelzer and Welzel [23]
was used to generate the experimental data. The experi-
mental temperature measurements at specified points were
obtained through finite element simulations using the
known conductivity function. The conductivity function
used in the simulated experiment was defined as

jðT Þ ¼ 5� 10�8T 3 � 9� 10�5T 2 þ 5:1� 10�3T þ 70:1.

ð20Þ
In order to study the effect of the number of measure-

ment points on the solution of the inverse problem at hand,
three different configurations of measurement points were
Fig. 6. Measurement points configurations used for three different simulated ex
investigated (Fig. 6a–c). Configuration A had one row of
measurement points at the top of the plate, Configuration
B had three rows near the top, and Configuration C had
five rows near the top. Other arrangements of measurement
points were also investigated, but only selective results are
shown for brevity. As will be shown later, Configurations
A, B, and C clearly illustrate the effect of the number of
measurements on the inverse solution. The measurement
points were taken to coincide with nodes in the finite ele-
ment mesh for convenience in the application of measured
temperatures in the second finite element analysis of the
self-learning algorithm.

When applying this method to an actual experiment, the
number and layout of measurement points will be dictated
by a number of factors, including geometry, boundary con-
ditions, and experimental equipment available. For the
purpose of this proof of concept, the measurement points
in the example were chosen for simplicity to demonstrate
the performance of the self-learning algorithm, and the
effect of the amount of measurement information provided
to the algorithm. It is expected that other more practical
sensor configurations used in real experiments would also
yield satisfactory results.

In order to study the stability of the self-learning finite
element methodology, a random Gaussian noise was intro-
duced in the simulated data for Configurations B and C,
which correspond to 3 and 5 rows of measurement points,
respectively. The random Gaussian noise was introduced in
the simulated data as

T error ¼ T exact þ d0x; ð21Þ
periments: (a) Configuration A, (b) Configuration B, (c) Configuration C.
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where Terror is the temperature containing the random
noise, Texact is the temperature of the simulated test with-
out noise, x is a normally distributed random variable with
a unit variance and zero mean, and d0 = 1% max(Texact). It
was found that this equation produced realistic values of
temperature deviations expected during laboratory or field
measurements.

6.1. Neural network architecture and pretraining

The architecture of the NN thermal constitutive model
consisted of three inputs (i.e. oT

ox, oT
oy and T), two outputs

(Jx and Jy), and two hidden layers of 12 nodes each.
Although a simpler architecture could have been used
(i.e. two inputs and one output) due to isotropy, the archi-
tecture described above was used to illustrate a more gen-
eral approach that could also be applied to anisotropic
materials. An adaptive method for determining the net-
work architecture was not used in this example due to
the fact that for a simulated experiment the necessary com-
plexity of the NN could be determined a priori. It was
determined through interactive trials that two12-neuron
hidden layers could capture the desired constitutive behav-
ior for this problem.

The NN material model was pretrained using a constant
conductivity of 70.5 W/m �C.

Initialization of the NN material model was carried out
using a uniform distribution of randomly generated tem-
peratures and temperature gradients from which the corre-
sponding heat fluxes were calculated using Fourier’s law as

J x

J y

� �
¼ �

j 0

0 j

� �
T ;x

T ;y

� �
. ð22Þ

The random temperatures generated for initializing the
NN model were uniformly distributed in the range between
0 and 1200 �C and the temperature gradients were between
�500,000 and 500,000 �C/m, resulting in heat fluxes
between �32,250,000 and 32,250,000 W/m2. The training
set for initialization of the NN material model contained
600 patterns generated in the ranges stated above, and each
patter consisted of two temperature gradients (X- and Y-
direction), one temperature, and two heat fluxes (X- and
Fig. 7. Case 1RF: Configuration A—no noise. (a
Y-direction). The NN material model was then trained
using the resilient propagation (RPROP) algorithm until
the local error defined in Eq. (19) was less than or equal
to 10�6.

After the NN was initialized, the self-learning algorithm
was used to extract a thermal constitutive NN model using
the simulated experimental data. The results of this process
are shown next.

6.2. Results

Five different cases of the inverse analysis were studied.
The first three cases were defined as Configurations A, B,
and C with no noise added to the simulated experimental
data. These cases were labeled 1RF (1 Row of measure-
ment points, Free of noise), 3RF, and 5RF, respectively.
The remaining two cases were defined as Configurations
B and C with random noise added to the simulated exper-
imental data. These two cases were labeled 3RN (3 Rows of
measurement points, with Noise) and 5RN, respectively.

Plots of the outputs, Jx and Jy, of the inversely recovered
NN material model versus temperature and temperature
gradient are shown in Figs. 7–11 for all the studied cases.
Black dots in these plots represent data entries produced
by the NN material model at Gauss points, while the plot-
ted surface represents the actual material behavior
described by Eq. (22) and using the temperature-dependent
conductivity from Eq. (20). Figs. 7–9 correspond to cases
1RF, 3RF, and 5RF, respectively. It can be observed that
in all three cases the NN was able to satisfactorily approx-
imate the real material behavior, although Case 1RF
showed a larger deviation from the solution in the Y-direc-
tion due to the lower information content available in that
set of measurement locations. It can be seen in Fig. 7b that
a larger discrepancy exists between the NN prediction and
the true solution than that observed for the other cases
(3RF and 5RF). Figs. 8 and 9 show that better approxima-
tions to the heat flux in the Y-direction were obtained as
the number of measurement points (information content)
was increased beyond one row.

Figs. 10 and 11, which correspond to cases 3RN and
5RN (i.e. noise added to the simulated experimental data),
respectively, show that the recovered NN material model
) Flux in X-direction, (b) flux in Y-direction.



Fig. 10. Case 3RN: Configuration B—with noise. (a) Flux in X-direction, (b) flux in Y-direction.

Fig. 9. Case 5RF: Configuration C—no noise. (a) Flux in X-direction, (b) flux in Y-direction.

Fig. 8. Case 3RF: Configuration B—no noise. (a) Flux in X-direction, (b) flux in Y-direction.

2474 W. Aquino, J.C. Brigham / International Journal of Heat and Mass Transfer 49 (2006) 2466–2478
was less accurate than in the noise-free cases, as expected,
but was still able to approximate satisfactorily the true
material behavior.

In order to quantify the accuracy of the recovered NN
model, an average error, Eflux, for each output of the NN
was calculated as
Eflux ¼
1

M

XM
m¼1
a¼x;y

J exact
am � J NN

am

J exact
am

����
����; ð23Þ

where J exact
am is the component of heat flux in the X or Y

direction corresponding to the real material model, J NN
am is



Fig. 11. Case 5RN: Configuration C—with noise. (a) Flux in X-direction, (b) flux in Y-direction.
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the corresponding heat flux component obtained using the
NN material model, m indexes the Gauss points, and M

is the total number of Gauss points in the finite element
model. The average error computed using Eq. (23) for
the studied cases is illustrated in Fig. 12. It can be observed
that for the noise-free cases the prediction improved as the
number of measurements points increased, as expected.
The average error in heat flux increased when noise was
added to the data, and was of the same order of magnitude
as the error introduced in the simulated measurements.
Case 5RN showed a higher average error than Case
3RN, but this behavior is normal because of the random
nature of the noise.

To this end, it has been shown that the self-learning
methodology was able to inversely recover a NN material
model that relates heat fluxes to temperatures and temper-
ature gradients for a given material. But, has the NN also
learned other fundamental information such as isotropy?
In order to answer this question the entries of the matrix
K, defined in Eq. (14), for the noise-free cases are exam-
ined. If enough information is available to the NN through
the training data generated during the self-learning process,
Fig. 12. Average error in neural network outputs with respect to exact
solution.
the diagonal entries of the matrix K should approximate
the known conductivity function j(T), and the off-diagonal
entries should be close to zero [refer to Eq. (22)]. Fig. 13a–c
show plots of the diagonal entries of K matrix (i.e. Kxx and
Kyy) computed from the NN material model at Gauss
points versus temperature, while Fig. 14a–c show plots of
the off-diagonal entries (i.e. Kxy and Kyx) versus tempera-
ture. It can be observed from the plots that the NN mate-
rial model indeed approximates the conductivity function
in all cases. However, the best approximation of the con-
ductivity function occurs when five rows of measurements
are used. This fact indicates that information about isot-
ropy of the material was indeed present in the training
data, and this information was enriched as more measure-
ment points were added. The off-diagonal entries depart
significantly from zero for cases 1RF and 3RF, indicating
lack of information about material symmetry in the data.
For Case 5RF, the off-diagonal entries were very close to
zero, which means that this experimental setup was able
to reveal very complete information about the material
behavior.

The foregoing results demonstrate that the self-learning
algorithm is able to inversely recover not only the mapping
between temperature, temperature gradients, and heat flux,
but also fundamental information about material symme-
try (i.e. isotropy or anisotropy). However, it is very impor-
tant to realize that the performance of the NN material
model should be judged primarily from the mapping
between temperatures, temperature gradients, and heat flux
(Figs. 8–11) since this is the main target of the inverse prob-
lem solution. In addition, it is important to bear in mind
that thermal conductivity is recovered through differentia-
tion of the NN material model. Since differentiation is a
coarsening operator (i.e. degrades function smoothness),
it should be expected that the NN model would require
more information to adequately capture both the mapping
of inputs and outputs and their derivatives.

It is important to realize that because Fourier’s law was
not used in the finite element formulation described in this



Fig. 13. Diagonal entries in matrix versus temperature. (a) Case 1RF: Configuration A—no noise, (b) Case 3RF: Configuration B—no noise, (c) Case
5RF: Configuration C—no noise.
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work (see Section 4), negative quantities may occur in the
off-diagonal entries and/or in the diagonal entries of the
K matrix during the inversion process. This is acceptable
in finite element analysis as long as the Jacobian matrix,
A, remains positive-definite. The reader should bear in
mind that the heat flux outputted by the NN is used to
assemble the internal heat flux vector in Eq. (10), which
is used to check energy balance in the body using Eq.
(11). Moreover, the Jacobian matrix, A, influences the
search direction of the Newton–Raphson algorithm, but
does not play a direct role in the energy balance equations.
The procedure presented in Section 4 for computing the
Jacobian matrix from the NN material model preserves
the quadratic convergence property of The Newton–Raph-
son algorithm.

Fig. 15 depicts the convergence of the self-learning algo-
rithm in the presence and absence of noise. The square root
of the global error from Eq. (18) versus iterations is shown.
One iteration corresponds to two finite element analyses
and training of the NN material model. It can be observed
from Fig. 15 that the procedure converged monotonically
for both cases. In addition, the solution was very stable
in the presence of noise.

7. Discussion

The self-learning finite element method presented in this
article is a hybrid of physical, mathematical, numerical,
and artificial intelligence based formulations. Self-learning
finite elements convey observable information (i.e. temper-
ature measurements, external heat loads, etc.) from the glo-
bal system to the local NN material model. This process
constrains the NN to learn physically and mathematically
feasible information.

During the error minimization in self-learning training,
temperatures calculated from the first finite element analysis
approach the measured temperatures, and the data sets
from the two finite element analyses become close to each
other (i.e. data sets converge). Eventually, the NN model
will be trained with data that carries no new information
and will not improve any further. The convergence of the
data sets from the two finite element analyses produces a



Fig. 14. Off-diagonal entries in matrix versus temperature. (a) Case 1RF: Configuration A—no noise, (b) Case 3RF: Configuration B—no noise, (c) Case
5RF: Configuration C—no noise.

Fig. 15. Global error behavior.
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very stable error behavior since the NN material model will
be essentially recycling its own data. This is also the reason
why, the self-learning method is expected to be very stable
in the presence of noisy data. Once the training data from
both analyses become sufficiently close, the NN will quickly
reach its error tolerance and will not continue training. Of
course, if a very tight error tolerance is set, the NN will learn
the error caused by the noise, and this will be reflected in the
recovered material model. As was shown above, the average
error in the trained NN material model is of the same order
as the error contained in the measurements, which is accept-
able for any inverse problem methodology.
As with any inverse problem solution, uniqueness is not
guaranteed in self-learning procedures. It is important
that enough experimental measurements are available to
constrain the solution. This was demonstrated in the exam-
ple presented in the previous section. For simple problems,
it is possible to estimate this number of measurements a
priori using arguments found in inverse problem theory.
This uniqueness and generalization of the NN model can
only be tested so far using ad hoc approaches. That is,
by employing different experimental configurations and
using numerical simulations with the trained NN material
model to predict the behavior of the new experimental
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configurations. However, this drawback affects other classi-
cal inverse problem techniques as well.

8. Conclusions

This paper introduced a new methodology based on
computational intelligence and conventional finite element
analysis for inverse estimation of thermal constitutive mod-
els. This methodology, termed ‘‘self-learning finite ele-
ments’’ uses a neural network representation of the
material behavior embedded in a non-linear finite element
scheme.

Self-learning finite element schemes present the advan-
tage that very general material behavior representations
can be obtained due to the universal function approxima-
tion capabilities of NN. The methodology showed good
stability in the inverse recovery of solutions. This fact stems
from the noise tolerance of NN. Although the methodol-
ogy was introduced in the context of steady-state heat
transfer, it can be readily extended to transient heat trans-
fer problems and coupled heat and mass transport
problems.
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